Geometry R – Mr. Bo CC Regents Review #3

1. In the diagram below of isosceles trapezoid ABCD, AB = CD = 25, AD = 26, and BC = 12.

What is the length of an altitude of the trapezoid?

- 1) 7
- 2) 14
- 3) 19
- 4) 24
- 2. What is an equation of circle O shown in the graph below?

- (1) $(x+2)^2 + (y-2)^2 = 9$ $(x-1)^2 + (y-1)^2 = 7^2$ 2) $(x+2)^2 + (y-2)^2 = 3$
- 3) $(x-2)^2 + (y+2)^2 = 9$
- 4) $(x-2)^2 + (y+2)^2 = 3$
- 3. What is the cos(A)?

- 1) $\frac{2}{3}$
- 2) $\frac{3}{2}$

 $\begin{array}{c} 3) \quad \sqrt{5} \\ 3 \\ \end{array}$

 $\cos(A) = \frac{ad}{hyp}$ $= \frac{2\sqrt{5}}{6}$

4) $\frac{3}{\sqrt{5}}$

4. In the diagram below, point P is the centroid of

If PM = 2x + 5 and BP = 7x + 4, what is the length of

- 5. In $\triangle RST$, $m \angle R = 58$ and $m \angle S = 73$. Which inequality is true?
- 1) RT < TS < RS
- 2) RS < RT < TS
- 3) RT < RS < TS
- 4) RS < TS < RT

- 6. The number of degrees in the sum of the interior angles of a pentagon is
- 1) 722) 3603) 5404) 720 $= 540^{\circ}$
 - 7. What is the equation of a line passing through (2,-1) and parallel to the line represented by the equation y = 2x + 1?

2)
$$y = -\frac{1}{2}x$$

2) $y = -\frac{1}{2}x + 1$
3) $y = 2x - 5$ $y = 2x - 5$

$$\begin{array}{ll}
(3) & y = 2x - 5 \\
A & y = 2x - 1
\end{array}$$

$$2(2) - 1 = 3$$

160 - 800

9.

In the diagram below of circle O, diameter \overline{AB} and radii \overline{OC} and \overline{OD} are drawn.

If $\widehat{AC} \cong \widehat{BD}$, find the area of sector \widehat{BOD} in terms of π Area Sector = anste . (Tirz) = 30° (71.6°) = § .36TT (= 871 Sq. units

The line y = 2x - 4 is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

y = 3x - 4 respect

11 1 = 2x - 4 interest. Dilation preserves 11- ism. So must have = slopes. Dilation does not preserve distance So yout must change.

10.

Given: $\triangle XYZ$, $\overline{XY} \cong \overline{ZY}$, and \overline{XW} bisects $\angle XYZ$

0

Prove that \(\times \property \mathbb{Z} \) is a right angle.

15 4xy 2 42 to

370 × 70

- (y) DXYW = DZYW
- (< XwY & < ZwY
- 7) Lxwr and U

(Galdens

- 1 4 bisector = 4 into
- 3 Reflexing.
- SAS.
- @ CPCTC.
- @ adi c's formed by 2 int. lines are supp.
- (2) 2 5 Supp + = are 50th 900